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-We develops a general theory for variance function estimation in

regression. Most methods in common use are included in our development.

The general qualitative conclusions are these. First, most variance

function estimation procedures can be looked upon as regressions with

responses' being transformations of absolute residuals from a preliminary

fit or sample standard deviations from replicates at a design point. Our

conclusion is that the former is typically more efficient, but not uniformly

so. Secondly, for variance function estimates based on transformations of

absolute residuals, we show that efficiency is a monotone function of the

efficiency of the fit from which the residuals are formed, at least for

symmetric errors. Our conclusion Is that one should iterate so that the

residuals are based on generalized least squares. Finally, robustness

issues are of even more importance here than in estimation of a regression

function for the mean. The loss of efficiency of the standard method away

from the normal distribution is much more rapid than in the regression

problem. o. .,
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1. INTRODUCTION

Consider a heteroscedastic regression model for observable data Y:

(1.1) EYI = Pi = f(xi P); Var (Y) = a 2g2 (zipe).

Here, (xi(k x 1)) are the design vectors, P(p x 1) is the regression parameter,

f is the mean response function, and the variance function g expresses the

heteroscedasticity, where (z (R x 1)) are known vectors, possibly the (x),a

is an unknown scale parameter, and 0(r x 1) is an unknown parameter. Models

which may be regarded as special cases of (1.1) are used in diverse fields,

including radioimmunoassay, econometrics, pharmokinetic modeling, enzyme

kinetics and chemical kinetics among others. The usual emphasis is on

estimation of / with estimation of the variances as an adjunct.

The most common method for estimating / is generalized least squares, in

which one estimates g(z,88,) by using an estimate of 9 and a preliminary

estimate of P and then performs weighted least squares; see, for example,

Carroll and Ruppert (1982a) and Box and Hill (1974). This might be iterated,

with the preliminary estimate replaced by the current estimate of P, a new

estimate of 9 obtained and the process repeated. Standard asymptotic theory as

in Carroll and Ruppert (1982a) or Jobson and Fuller (1980) shows that as long

as the preliminary estimators for the parameters of the variance function are

consistent, all estimators of 0 obtained in this way will be asymptotically

equivalent to the weighted least squares estimator with known weights.

There is evidence that for finite samples, the better one's estimate of 9,

the better one's final estimate of 4. Williams (1975) states that "both

analytic and empirical studies... indicate that... the ordering of efficiency (of

estimates of /).. .in small samples is in accordance with the ordering by
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efficiency (of estimates of 0)." Rothenberg (1984) shows via second order

calculations that if g does not depend on A, when the data are normally

distributed the covariance matrix of the generalized least squares estimator of

/ is an increasing function of the covariance matrix of the estimator of 9.

Second order asymptotics provide only a weak justification for studying

the properties of variance function estimates. Instead, our thesis is that

estimation of the structural variance parameter 9 is of independent interest.

In many engineering applications, an Important goal is to estimate the error

made in predicting a new observation; this can be obtained from the variance

function once a suitable estimate of 9 is available. In chemical and

biological assay problems, issues of prediction and calibration arise. In such

problems, the estimator of 9 plays a central role; the statistical properties

of prediction intervals and calibration constructs such as the minimal

detectable concentration will be highly dependent on how one estimates 9; see

Carroll, Davidian and Smith (1986). In off-line quality control, the emphasis

is not only on the mean response but also on its variability; Box and Meyer

(1986) state that "one distinctive feature of Japanese quality control

improvement techniques is the use of statistical experimental design to study

the effect of a number of factors on variance as well as the mean.". Effective

estimation of variance functions could play a major role in this application.

It should be evident from this brief review that far from being only a nuisance

parameter, the structural variance parameter 9 can be an important part of a

statistical analysis.

The above discussion suggests the need for a unified investigation of

estimation of variance functions, in particular, estimation of the structural

parameter 9. Previous work in the literature tends to treat various F7ocial

cases of (1.1) as different models with their own estimation methods. The

intent of this paper is to study parametric variance function estimation in a

.~~~ ~ -kA- . ' " , . • • # .. . • • . ° ° • o . - , o , - . . . . . ,° . . . . " . • . .. ." . "
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unified way. Nonparametric variance function estimation has also been studied,

see for example Carroll (1982); we will confine our study to the parametric

setting.

Parametric variance function estimation may be thought of as a type of

regression problem in which we try to understand variance as a function of

known or estimable quantities, and in which 6 plays the part of a "regression"

parameter. The major insight which allows for a unified study is that the

absolute residuals from the current fit to the mean or the sample standard

deviations from replicates are basic building blocks for analysis. At the

graphical level, this means that transformations of the absolute residuals and

sample standard deviations can be used to gain insight into the structure of

the variability and to suggest parametric models. For estimation, a major

contribution is to point out that most of the methods proposed in the

literature are (possibly weighted) regressions of transformations of the basic

building blocks on their expected values. Many exceptions to this are dealt

with in this article as well.

Our study yields these major qualitative conclusions. As stated here,

they apply strictly only to symmetric error distributions, but they are fairly

definitive and one is unlikely to be too successful ignoring them in practice.

Our first conclusion is that robustness plays a great role in the efficiency of

variance function estimation, probably even greater than in estimation of a

mean function. For example, if the variance does not depend on the mean

response, the standard method will be normal theory maximum likelihood as in

Box & Meyer (1986). A weighted analysis of absolute residuals yields an

estimator only 12% less efficient at the normal model, and with a large slope

of improvement for heavy tailed distributions. This slope of improvement is

much larger than is typical in regression on means. For a standard

contaminated normal model for which the best robust estimators have efficiency

-s
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125% with respect to least squares, the absolute residual estimator of the

variance function has efficiency 200%.

Our second conclusion concerns the fit to the means upon which the

residuals are based. It has been our experience that unweighted least squares

residuals yield unstable estimates of the variance function when the variances

depend on the mean. This is confirmed in our study, in the sense that the

asymptotic efficiency of the variance function estimators is an increasing

function of the variability of the current fit to the means. Thus, we suggest

the use of iterative weighted fitting, so that the variance function estimate

Is based on generalized least squares residuals. As far as we can tell, this

part of our paper is one of the first formal justifications for iteration in a

generalized least squares context.

It is standard in many applied fields to take m replicates at each design

point, where usually m < 4. Rather than using (transformations of) absolute

residuals for estimating variance function parameters, one might use the sample

standard deviations. Our third conclusion involves the efficiency of this

substitution, for which we develop an asymptotic theory. The effect is

typically, although not always, a loss of efficiency, at least when there are m

4 replicates. The clearest results occur when the variance does not depend

on the mean. Normal theory maximum likelihood is a weighted regression of

squared residuals; the corresponding method would be a weighted regression

based on sample variances. Using the latter entails a loss of efficiency, no

matter what the underlying distribution. For normally distributed data, the

efficiency is (m-l)/m, thus being only 50% for duplicates. For other methods,

using the replicate standard deviations can be more efficient. This is

particularly true of a method due to Harvey (1976), which is based on tl-

logarithm of absolute residuals. A small absolute residual, which seems to

always occur in practice, can wreak havoc with this method. This is consistent

% %
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with our Influence function calculations, so that we suggest some trimming of

the smallest absolute residuals before applying Harvey's method.

In Section 2 we describe a number of methods for estimation of G. We

confine our attention to methods which are in common use; in particular, we do

not discuss robust methods, see Giltinan, Carroll and Ruppert (1986). In

Section 3 we present an asymptotic theory for a general estimator of 9 whose

construction encompasses the methods of Section 2. Section 4 contains examples

of specific applications of our theory and a discussion of the implications of

our formulation. Sketches of proofs are presented in Appendix A.

2. ESTIMATION OF 9

We now discuss the form and motivation for several estimators of 9 in

(1.1). In what follows, let J3, be a preliminary estimator for a. This could

be unweighted least squares or the current estimate in an iterative reweighted

least squares calculation. Let the errors be given by e I = (Yi

f(x1 ,p))/(og(z1 .pj,G)} and denote the residuals by ri = Y- f(x i.P*).

2.1 Reoression Methods

Pseudo-likelihood. Given 8, the pseudo-likelihood estimator maximizes

the normal log-likelihood e(p.,ea), where

(2.1) t(P,e,a) = -N log a - ZlNllogg(zi,3,e))

2-i 1ZN (Y22_ (I Io) 1 N = { -flx 1,1))2/g2(zt'/p 'e)'

see Carroll and Ruppert (1982a). Generalizations of pseudo-likelihood for



robust estimation have been studied by Carroll and Ruppert (1982a) and

Giltlnan, Carroll and Ruppert (1986).

Least sauares on sauared residuals. Besides pseudo-likelihood, other

methods using squared residuals have been proposed. The motivation for these

methods is that the squared residuals have approximate expectation

022 (z .,O#), see Jobson and Fuller (1980) and Auemiya (1977). This suggests a

nonlinear regression problem in which the "responses" are (r2) and the

2 2
"regression function" is a g (zi ,A, , ). The estimator -SR minimizes in 9 and a

N 2 2 2 - 2

4 4For normal data the squared residuals have approximate variance a g (zip.G);

in the spirit of generalized least squares, this suggests the weighted

estimator which minimizes in 9 and a

(2.2) ZN= (r 2 2 g 2 (z 4,

where e, is a preliminary estimator for 0, 9SR for example. Full iteration,

when it converges, would be equivalent to pseudo-likelihood.

Accountling for the effect of leverage. One objection to methods such as

pseudo-likelihood and least squares based on squared residuals is that no

compensation is made for the loss of degrees of freedom associated with

preliminary estimation of p. For example, the effect of applying

pseudo-likelihood directly seems to be a bias depending on p/N. For settings

such as fractional factorials where p is large relative to N this bias could be

substantial.

Bayesian ideas have been used to account for loss of degrees of freedom;

see Harville (1977) and Patterson and Thompson (1974). When g does not depend

j .,. -, - :- --.. . . ., . . - .. .. -. ..-. -...-...--.,-..,..-........ . .... ..-... ....- ... ., ,
,y, ~~~~~~~~~~~. .. .. .. '. , . 1-,',. , .,., ,., . ..- ,.- -, .,,.. ... .'/ ,. ... ...-
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on 8, the restricted maximum likelihood approach of the latter authors suggests

in our setting one estimate 9 from the mode of the marginal posterior density

for 9 assuming normal data and a prior for the parameters proportional to a-

When g depends on 8, one may extend the Bayesian arguments and use a linear

approximation as in Box and Hill (1974) and Beal and Sheiner (1986) to define a

restricted maximum likelihood estimator.

Let Q be the N x p matrix with ith row f (x1 A) t/g(zi,,S), where f (xi5 p)

/ (f(xip)), and let H = Q(Q tQ)-IQt be the "hat" matrix with diagonal

element hii= hii(A,9); the values (h i) are the leverage values. It turns out

that the restricted maximum likelihood estimator is equivalent to an estimator

obtained by modifying pseudo-likelihood to account for the effect of leverage.

This characterization, while not unexpected, is new; we derive this estimator

and its equivalence to a modification of pseudo-likelihood in Appendix B.

The least squares approach using squared residuals can also be modified to

show the effect of leverage. Jobson and Fuller (1980) essentially note that

for nearly normally distributed data we have the approximations

2 2 2
E i a (1-hi )g (zi'oe),

2 4 294 ,,)var r i  cy (1-hi) 9(z i/ ),

To exploit these approximations modify (2.2) to minimize in 9 and a

(2.3) N= (r 2 a2(1-hil)g2(z,0*.9)) 2/{(l-hi1 ) 2 ,g 4z.,p,))

where h = h ( ,,) and G* is a preliminary estimator for S. An
it i

asymptotically equivalent variation of this estimator in which one sets the

derivatives of (2.3) with respect to 9 and a equal to 0 and then replaces 9, by

9 can be seen to be equivalent to pseudo-likelihood in which one replaces

'5 I



8

standardized residuals by studentized residuals. While this estimator also

takes into account the effect of leverage, it is different from restricted

maximum likelihood.

Least sauares on absolute residuals. Squared residuals are skewed and

long-tailed, which has lead many authors to propose using absolute residuals to

estimate 9; see Glejser (1969) and Thell (1971). Assume that

EJYI - f(xi.3)I = ) g(z1 ,/.9),

which is satisfied if the errors {6) are independent and identically

distributed. Mimicking the least squares approach based on squared residuals,

one obtains the estimator aAR by minimizing in q and 9
N " 2
i= 1 Ir, - qg(z i,,)

In analogy to (2.2), the weighted version is obtained by mimimizing

N 2(j= {rij - qg(zi',8,,e)) /g (zip*,O,) ,

where G, is a preliminary estimator for 9, probably 0AR' As for least squares

estimation based on squared residuals, one could presumably modify this

approach to account for the effect of leverage.

Lozarithm method. The suggestion of Harvey (1976) is to exploit the fact

that the logarithm of the absolute residuals has approximate expectation log

{og(zi1,p,9)). Estimate 0 by ordinary least squares regression of log 1rl1 on

log (Cg(z,,*,9)), since if the errors are independent and identically

distributed, the regression should be approximately homoscedastic. If one of

the residuals is near zero the regression could be adversely affected by a

large "outlier," hence in practice one might wish to delete a few of the

smallest absolute residuals, perhaps trimming the smallest few percent.

2.2 Other methods

. . . . %,"s- .. " ," . . "" ./ / '_.. '' . " . """'' ' e" "' ."-"". '"' ."' .' " " , ' """ """-"".. . ". " ." " " .' "
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Besides squares and logarithms of absolute residuals, other

transforiations could be used. For example, the square root and 2/3 root would

typically be more normally distributed than the absolute residuals themselves.

Such transformations appear to be useful, although they have not been used much

to our knowledge. Our asymptotic theory applies to such transformations.

In a parametric model such as (1.1), joint maximum likelihood estimation

is possible, where we use the term maximum likelihood to mean normal theory

maximum likelihood. When the variance function does not depend on , it can be

easily shown that maximum likelihood is asymptotically equivalent to weighted

least squares methods based on squared residuals. In the situation in which

the variance function depends on 4 this is not the case. In this setting, it

has been observed by Carroll and Ruppert (1982b) and McCullagh (1983) that

while maximum likelihood estimators enjoy asymptotic optimality when the model

and distributional assumptions are correct, the maximum likelihood estimator of

A can suffer problems under departures from these assumptions. This suggests

that joint maximum likelihood estimation should not be applied blindly.

Methods requiring m. 2 replicates at each x1 have been proposed in the

assay literature; for simplicity, we will consider only the case of

equi-replication m. m and write in obvious fashion (Y ij}, j = I ... m, to

denote the m observations at x where appropriate. These methods do not depend

on the postulated form of the regression function; one reason that this may be

advantageous is that in many assays along with observed pairs (Yij'xI) there

will also be pairs in which only Y is observed. A popular and widely used

method is that of Rodbard and Frazier (1975). If we assume

(2.4) g(zi.p,O) =g(dlZi1 ),

.4*
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the method is identical to the logarithm method previously discussed except

that one replaces Iril by the sample standard deviation sI and f(xI.P.,) In the

"regression" function by the sample mean V -" As an alternative, under the

assumption of independence and (2.4), the modified maximum likelihood method of

Raab (1981) estimates 9 by joint maximization in the (N+r+l) parameters

a2 /Pl ..... 'N of the "modified" normal likelihood

(2.5) MN n2 2 (m-1)/2mexp[_zn( 2/{22g2 U z1'
(112 g ( z I

3. AN ASYMPTOTIC THEORY OF VARIANCE FUNCTION ESTIMATION

In this section we construct an asymptotic theory for a general class of

regression-type estimators for G. Since our major interest lies in obtaining

general insights, we do not state technical assumptions or details.

3.1 Methods based on transformations of absolute residuals

Write d1 (/3) = i - f(x1 ,P)I. Let H1 be a smooth function and define H2,1

by

H2. = H2,1(q,,p) = E ( H 1(d (fi1) ],

where q is a scale parameter which Is usually a function of a only. If q.. 0.

and a*. are any preliminary estimators for q, 0, and p, define q and 0 to be the

solutions of

(3 1) N 1/2 z 1N H4 1 (q,9,A*) (H(d(p*) - H2  0q,e ,*)) / 7,9 .,*)

where H 3,(q, ) is a smooth function and H4,1 is usually the partial

I

i "- " ''' ' . : " " ''''' - - - - -""'F "" " """ -" -" ' - '-"" -" ' -' ." - . " " " " -"' " " "" .
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derivative of H2, with respect to (q.).

The class of estimators solving (3.1) includes directly or includes an

asymptotically equivalent version of the estimators of Section 2.1. For

methods which account for the effect of leverage, H2,1' H3,1 and H4 ,1 will

depend on the hii. In this case we need the additional assumption that if h -

max (hi1), then N
1/2h converges to zero.

Ihi L7. Let q-,, and ', be N1/2 consistent for estimating q, 9 and /.

Let H be the derivative of HI and define

-1 N tl/H3 .
1,N i=i 4,i 4,1 3.1'

B2,N -N 1 (H /H ) a /aO (H2 ,(7, ));B ,N l d4,1 3,1 2
-1 NB3, N =-N Zi=1 (H 4,1/H 3,)f (x3) E[H(d())sign()].

'p.

Then, under regularity conditions as N-. ,

B / N7 -12', B N' /(p-j
(3.2) B = N ZI/ =I + (B2,+B 3,N 2 + p(1).

We may immediately make some general observations about the estimator 9

-. solving (3.1). Note that if the variance function does not depend on C, then

H2, 1 does not depend on p and hence B2,N = 0. For the estimators of Section

2.1, H1 is an odd function. Thus, if the errors {e) are symmetrically

distributed, E[ ft (d (p))sign(e ) ] 0 and hence B 0.
I I i i 3,N

Corollary 3.1(a). Suppose that the variance function does not depend on p and

the errors are symmetrically distributed. Then the asymptotic distributions of

,%%
,._, , ,-., ,. .. .. . . . - --. ,, . - ,. ,, e • .- - , .- ,- . • - - • ,.-- - .. , ..
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the regression estimators of Section 2.1 do not depend on the method used to

obtain /,. If both of these conditions do not hold simultaneously, then the

asymptotic distributions will depend in general on the method of estimating 8.

The implication is that in the situation for which the variance function

does not depend on jD and the data are approximately symmetrically distributed,

for large sample sizes the preliminary estimator for / will play little role in

determining the properties of 9. Note also from (3.2) that for weighted

methods, the effect of the preliminary estimator of 9 is asymptotically

negligible regardless of the underlying distributions.

The preliminary estimator 0* might be the unweighted least squares

estimator, a generalized least squares estimator or some robust estimator.

See, for example, Huber (1981) and Giltinan, Carroll and Ruppert (1986) for

examples of robust estimators for A. For some vectors {VN,i , these estimators

admit an asymptotic expansion of the form

3 1/2(_ - N
(3.3) N (/3* - A) = N i= '(v N *' + 0pM

Here T is odd in the argument c. In case the variance function depends on A,

B2,N 0 0 in general; however, if the errors are symmetrically distributed and

,/* has expansion of form (3.3), then the two terms on the right-hand side of

(3.2) are asymptotically independent. The following is then Immediate.

Corollary 3.1(b). Suppose that the errors are symmetrically distributed and

that 8, has an asymptotic expansion of the form (3.3). Then for the estimatorq

of Section 2.1, the asymptotic covariance matrix of 0 is a mronotoae

nondecreasing function of the asymptotic covariance matrix of /,.

J....... ............... ...... .....
- .o ,'°. ° .% ° " . .".°.°o ° " . , " " " . . ° -. .- . °o... o-° . " . . ..-. •.".- o " o"°"."...
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By the Gauss-Markov theorem and the results of Jobson and Fuller (1980)

and Carroll and Ruppert (1982a), the Implication of Corollary 3.1(b) Is that

using unweighted least squares estimates of 8 will result in inefficient

estimates of 9. This phenomenon is exhibited In small samples In a Monte Carlo

study of Carroll, Davidian and Smith (1986). If one starts from the unweighted

least squares estimate, one ought to iterate the process of estimating 9 -- use

the current value 8, to estimate 9 from (3.1), use these /3 and 9 to obtain an

updated j0, by generalized least squares and repeat the process T - 1 more

times. It Is clear that the asymptotic distribution of 9 will be the same for

T > 2 with larger asymptotic covariance for T - 1, so in principle one ought to

iterate this process at least twice. See Carroll, Ruppert and Wu (1986) for

more on iterating generalized least squares.

3.2 Methods based on sample standard deviations

Assume at each of M design points we have m > 2 replicate observations so

that N = Mm represents the total number of observations. Let (si} be the

sample standard deviations, which themselves have been proposed as estimators

of the variance in generalized least squares estimation of p. This can be

disasterous, see Jacquez, Mather and Crawford (1968). When replication exists.

however, practitioners feel comfortable with the notion that the (sl) may be

used as a basis for estimating variances; thus, one might reasonably seek to

estimate 9 by replacing di(13) by s In (3.1).

The following result is almost immediate from the proof of Theorem 3.1 in

Appendix A. Here we let N such that m remains fixed.

Theorem 3.2. If dil ,8) is replaced by si in (3.1), then under the conditions

of Theorem 3.1 the resulting estimator for 9 satisfies (3.2) with B3,N  0 and

.. .. .... ..-...... .... . ...-.........- ,...--......-..-.........,,- -........
•~~. ...,.......... - . o" .... ... ,,.., .- ., ' ,.. .. . '- '.,
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the redefinitions

(3.4a) C1  (H4 1 /H3,1 )(Hs 1 1(s - H2,1

(3.4b) H2 ,1 ' E (Hl(si)) - H 2 1 (7,.48). 0

If the errors are symmetrically distributed, then from (3.2) and Theorem

3.2. whether one is better off using absolute residuals or sample standard

deviations in the methods of Section 2.1 depends only on the differences

between the expected values and variances of H1(di(0)) and Hl (S I In Section

4 we exhibit such comparisons explicitly and show that absolute residuals can

be preferred to sample standard deviations in situations of practical

importance.

3.3 Methods not dependinL on the reyression function

We assume throughout this discussion that the variance function has form

(2.4) and that m Z 2 replicates are available at each xi. From Section 2.1 we

see that the "regression function" part of the estimating equations depends on

f(Xiq 3 .), so that in the general equation (3.1) H2 .' H3,i and H4,i all depend

on f(xi,,C*). In some settings, one may not postulate a form for the p1  for

estimating e; the method of Rodbard and Frazier (1975), for example, uses s in
AI

place of di(p 1 ) as in Section 3.2 and replaces f(x,/3) by the sample mean V.

We now consider the effect of replacing predicted values by sample means for

the general class (3.1).

The presence of the sample means In the variance function in (3.1

requires more complicated and restrictive assumptions than the usual large

sample asymptotics applied heretofore. The method of Rodbard and Frazier and

the general method (3.1) with sample means are functional nonlinear errors in

.............................. .; .. .S . . .4 ..
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variables problems as studied by Wolter and Fuller (1982) and Stefanski and

Carroll (1985). Standard asymptotics for these problems correspond to letting

-1/2
ago to zero at rate N In Section 3.4 we discuss the practical

implications of a being small; for now, we state the following result.

Theorem 3.3.. Suppose that we replace f(x.) by in H H and H

In Theorems 3.1 and 3.2 and adopt the assumptions of those theorems. Further,

suppose that as N. , a -. 0 sImultaneously and

(i) N . 0 1 A <o;
,' 1/2 N

(ii) N Z N C has a nontrivial asymptotic normal limit distribution;
i=1 i

(iii) The (e 1 ) are symmetric and i.i.d

(iv) (i. - il / a) 2 has uniformly bounded k moments, some k > 2.

Then the results of Theorems 3.1 and 3.2 hold with B = B3, 0.

2,N 3,N

This result shows that under certain restrictive assumptions, one may

replace predicted values by sample means urJer replication; however, it is

important to realize that the assumption of small a is not generally valid and

hence the use of sample means may be disadvantageous in situations where these

asymptotics do not apply.

The estimator of Raab (1981) discussed in Section 2.2 is also a functional

nonlinear errors in variables estimator, complicated by a parameter space with

size of order N. Sadler and Smith (1985) have observed that the Raab estimator

is often indistinguishable from the same estimator with jj replaced by V In

(2.5); such an estimator is contained in the general class (3.1). Davidian

(1986) has shown that under the asymptotics of Theorem 3.3 and additional

regularity conditions that the two estimators are asymptotically equivalent in

an important special case. We may thus consider the result of Theorem 3.3

".r ".r . 'e .*
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relevant to this estimator.

3.4 Small a asymntotics

In Section 3.3 technical considerations forced us to pursue an asymptotic

theory In which a is small. It turns out that in some situations of practical

Importance these asymptotics are relevant. In particular, in assay data we

have observed values for a which are quite small relative to the means. Such

asymptotics are used in the study of data transformations in regression. It is

thus worthwhile to consider the effect of small a on the results of Sections

3.1 and 3.2 and to comment on some other implications of letting o -# 0.

In the situation of Theorem 3.1, If the errors are symmetrically

distributed, then for the estimators of Section 2.1. If a -# 0 as N -# -, then

there is no effect for estimating the regression parameter C. In the situation

of Theorem 3.2, the errors need not even be symmetrically distributed. The

major Insight provided by these results is that in certain practical situations

in which a is small, the choice of /,, may not be too important even if the

variance function depends on p.
-a

Small a asymptotics may be used also to provide insight into the behavior

of other estimators for 9 which do not fit into the general framework of (3.1).

Davidian (1986) has shown that for fixed a the extended quasi-likelihood

estimator of 9 of Nelder and Pregibon (1986) and McCullagh and Nelder (1983)

need not be consistent. If one adopts the asymptotics of the previous section,

however, it is easily shown that the extended quasi-likelihood estimator is

asymptotically equivalent to regression estimators based on squared residuals.

4. APPLICATIONS AND FURTHER RESULTS

..... . ...- o..•. . ......... •... . . . . . . . . .;~.-
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In Section 3 we constructed an asymptotic theory which and stateed some

general characteristics of regression-type estimators of 9. In this section we

use the theory to exhibit the specific forms for the various estimators of

Section 2 and compare and contrast their properties. Throughout, define

z(I4,.9) - log g(z1 ,8,G),

and let P'(ijO,) and v(ip,9) be the column vectors of partial derivatives of

v with respect to 9 and A. Further, let t(p,G) be the covariance matrix of

v (i,,). For simplicity, assume that the errors ({-i) are independent and

identically distributed with kurtosis x; x = 0 for normality.

4.1 Pseudo-likelihood. restricted maximum likelihood and weiihted

sauared residuals,

* 1/2- If when accounting for the effect of leverage we let h 0 such that N h

-. 0, then these methods are asymptotically equivalent. Writing i7 = log o, we

have H (X) - x 2  = exp(2q) g2 (ztO), H H 2

ad 1 2,1 (ipG. 3,1 2,1
and E [ (p)) sign(&1 ) ] = 2 E [ Y- f(xld)] = 0 so that B = 0

regardless of the underlying distributions. If g does not depend on p, or o -

" Op(ON-1/2)
0. then as long as 8*-p = 0 (,N is asymptotically normally distributed

p
with mean 9 and covariance matrix

(4.1) (2 + K) {4N ((,e))

As mentioned in Section 3, under the small o asymptotics of Theorem 3.3,

the extended quasi-likelihood estimator of 9 is asymptotically equivalent to

the estimators here with asymptotic covariance matrix (4.1). It has been shown

by Davidian (1986) that these methods are asymptotically equivalent to maximum

° o % o - o • * W .• 
4 

. * .* V. '. • . . - . . ,, , .- . '.* •. *. , , • - . .. -

4• ,- .- . ,4 ,,.. **4 . - , , , . . . .. .," , . , . " .. . , • . . , ° . - . " ,. " ," ' ' .
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likelihood for general underlying distributions, so that pseudo-likelihood,

weighted squared residuals, restricted maximum likelihood, maximum likelihood

and, if a -* 0, extended quasi-likelihood, are all asymptotically equivalent.

In addition, all of these estimators have influence functions which are linear

in the squared errors, Indicating substantial nonrobustness.

We may also observe that these methods are preferable to unweighted

regression on squared residuals. Write (4.1) as

(4.2) (1/2 + x/4) (VW- V) -1 ,

where W Is the N x N diagonal matrix with elements H 3, and V is the N x p

th t
matrix with I row H For the unweighted estimator based on squared

4r I

residuals, calculations similar to those above show that the asymptotic

covariance matrix when either g does not depend on p or a - 0 is given by

t -1 t-(4.3) (1/2 + x/4) (V V) (VtWV)(VtV)

The comparison between (4.2) and (4.3) is simply that of the Gauss-Markov

theorem, so that (4.2) is no larger than (4.3).

4.2 Logarithms of absolute residuals and the effect of inliers

We do not consider deletion of the few smallest absolute residuals. Here

H (x) = log x so that Hl(x) = x Letting q = log a and assuming independent

and Identically distributed errors we have H = q + u(i,p.9) + E log I ff
2,1

H3,1 3 1, andH = r(,p,G). Under the assumption of symmetry of the errors.

with g not depending on p or a -# 0, tedious algebra shows that 6 is

asymptotically normally distributed with mean 9 and covariance matrix

*5 \ .. .. * 5 , N - * * *.. - . * *. -. • * S. -. ' . -% P P _A7 :A-' - -A '
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2 -
(4.4) var (log 16) (4N '(Je)-

The influence function for this estimator is linear in the logarithm of the

absolute errors. This indicates nonrobustness more for inliers than for

ourliers, which at the very least is an unusual phenomenon. If the errors are

not symmmetric then there will be an additional effect due to estimating O not

present for the methods of Section 4.1. even if g does not depend on p.

4.3 Weighted Absolute Residuals

Assume that the errors are independent and identically distributed and let

exp(q) = aEjej. Consider the weighted estimator. We have HI(x) = x, H1 (x) =
2

1, H = exp(q) g(z1,P,S) and 3[ = 2, Thus, if the errors are2'i 3,1 2 1*

symmetrically distributed and either g does not depend on P or a -# 0, 9 is

asymptotically normally distributed with mean 0 and covariance matrix

(4.5) ( 8/(1 - 8)) (N (p,9)) ,

where 8 = var . The influence function for this estimator Is linear in the

absolue errors. By an argument similar to that at the end of Section 4.1, we

may conclude that when the effect of p, is negligible one should use a weighted

estimator and iterate the method.

4.4 Comparison of methods based on residuals

We assume that the errors are symmetric and independent and identically

distributed and that either g does not depend on p or a is small. Using (4.1),

.46%Z~\Kw.~ -
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(4.4) and (4.5), the asymptotic relative efficiency (ARE) of the three methods

depends only on the distribution of the errors. The ARE of the weighted

absolute residual method to pleudo-likelihood is the same as the asymptotic

relative efficiency of the mean absolute deviation with respect ot the sample

variance for a single sample, see Huber (1981, page 3). For normal errors,

using absolute residuals results in a 12% loss in efficiency while for standard

double exponential errors there is a 25% gain in efficiency for using absolute

residuals. For normal errors, the logarithm method represents a 59% loss of

efficiency with respect to pseudo-likelihood.

In Table 1 we present ARE's for various contaminated normal distributions.

The table shows that while at normality neither the absolute residuals nor the

logarithm methods are efficient, a very slight fraction of "bad" observations

is enough to offset the superiority of squared residuals in a dramatic fashion.

For example, just two bad observations in 1000 negate the superiority of

squared residuals. If 1% or 5% of the data are "bad," absolute residuals and

the logarithm method, respectively, show substantial gains over squared

residuals. The implication is that while it is commonly perceived that methods

based on squared residuals are to be preferred in general, these methods can be

highly non-robust. Our formulation includes this result for maximum

likelihood, showing its inadequacy under slight departures from the assumed

distributional structure.

4.5 Methods based on sample standard deviations

Assume that m > 2 replicate observations are available at each desip-"

point. In practice, m is usually small , see Raab (1981). We compir , using

absolute residuals to using sample standard deviations in the estimators of

Section 2.1. For simplicity, assume that the errors are independent and

d

e, , e e..,-,..,,-.. -. .. .', "-. - ..',', -... , "- " . " " -"
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" identically and symmetrically distributed and that either g does not depend on

,C or a is small. If the errors are not symmetric and o Is not small or the

variance depends on P, using sample standard deviations presumably will be more

efficient than in the discussion below. This issue deserves further attention.

Let s be the sample variance of m errors (E'.''). It Is easily shown
m m

by calculations analagous to those of section 4.1 that replacing absolute

residuals by sample standard deviations has the effect of changing the

asymptotic covariance matrices (4.1), (4.4) and (4.5) to

(4.6) Pseudo-likelihood ((2 + x) + 2/(m - 1)) (4N (/C,G)) -

(4.7) Logarithm method m var ( log (s ) (4N 1()-
•m

-l
(4.8) Weighted absolute residuals {m 8* / (1 - 8.)) (N s(/,9)}

where 8, = var (s ). Table 2 contains the asymptotic relative efficiencies of3

using sample standard deviations to using transformations of absolute residuals

for various values of m when the errors are standard normal. The values in the

2
table for H1(x) = x and x indicate that if the data are approximately normally

distributed, using sample standard deviations can entail a loss in efficiency

with respect to using residuals if m is small. For substantial replication (m

10), using sample standard deviations produces a slight edge in efficiency

with respect to weighted absolute residuals for H1 = x.

The second column of Table 2 shows that for the logarithm method, using

sample standard deviations surpasses using residuals in terms of efficiency

except when m = 2 and is more than twice as efficient for large m. In its raw

form, log jr 11 is very unstable because, at least occasionally, 1rj1

producing a wild "outlier" in the regression. The effect of usir; ,

standard deviations is to decrease the possibility of such inliers; the sample

standard deviations will be likely more uniform, especially as m increases.

S. . . . . . . ... .. .. -. . . ... -.-. . ..-.... ."... .-.
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The implication is that the logarithm method should not be based on residuals

unless remedial measures are taken. The suggestion to trim a few of the

smallest absolute residuals before using this method is clearly supported by

the theory; presumably, such trimming would reduce or negate the theoretical

superiority of using sample standard deviations.

Table 3 contains the asymptotic relative efficiencies of weighted squared

sample standard deviations and logarithms of these to weighted squared

residuals under normality of the errors. The first column is the efficiency of

Raab's method to pseudo-likelihood, and the second column is the efficiency of

the Rodbard and Frazier method to pseudo-likelihood. The results of the table

imply that using the Raab and Rodbard and Frazier methods, which are popular in

- the analysis of radioimmunoassay data, can entail a loss of efficiency when

compared to methods based on weighted squared residuals. Davidian (1986) has

shown that the Rodbard and Frazier estimator can have a slight edge in

efficiency over the weighted squared residuals methods for some highly

*. contaminated normal distributions. Using (4.6), the squared residual methods

will be more efficient than Raab's method in the limit. Table 3 also addresses

the open question as to whether Raab's method is asymptotically more efficient

that the Rodbard and Frazier method for normally distributed data. The answer

is a general yes, thus agreeing with the Monte-Carlo evidence available when

the variance is a power of the mean.

5. DISCUSSION

In Section 3 we constructed a general theory of regression-type estimatin-

for 9 in the heteroscedastic model (1.1). This theory includes a,; peclal

cases common methods described in Section 2 and allows for the regression to be

based on absolute residuals from the current regression fit as well as sample
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standard deviations in the event of replication at each design point. Under

various restrictions such as symmetry or small a, when the variance function g

does not depend on A, we showed in Sections 3 and 4 that we can draw general

conclusions about this class of estimators as well as make comparisons among

the various methods.

When employing methods based on residuals, one should weight the residuals

appropriately and iterate the process. There can be large relative differences

among the methods in terms of efficiency. Under symmetry of the errors,

squared residuals are preferable for approximately normally distributed data,

but this preference is tenuous, these can be highly non-robust under only

slight departures from normality; methods based on logarithms or the absolute

residuals themselves exhibit relatively more robust behavior. For the small

amount of replication found in practice, using sample standard deviations

rather than residuals can entail a loss in efficiency If estimation is based on

the squares of these quantities or the quantities themselves. For the

logarithm method based on residuals, trimming the smallest few absolute

residuals is essential, since for normal data using sample standard deviations

is almost always more efficient than using residuals, even for a small number

of replicates. Popular methods applications such as radloimmunoassay based on

sample means and sample standard deviations can be less efficient than methods

based on weighted squared residuals.

Efficient variance function estimation in heteroscedastic regression

analysis is an important problem in its own right. There are important

differences in estimators for variance when it is modeled parametrically.

^ %
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APPENDIX A. PROOFS OF MAJOR RESULTS

We now present sketches of the proofs of the theorems of Section 3. Our

exposition is brief and nonrigorous as our goal Is to provide general insights.

In what follows, we assume that

1/2 - a(A.1) N' [ - );

under sufficient regularity conditions it is possible to prove (A.1). Such a

proof would be long, detailed and essentially noninformative; see Carroll and

1/2Ruppert (1982a) for a proof of N consistency in a special case.

Sketch of proof of Theorem 3.1: From (3.1), a Taylor series, the fact that E [

Hi(di(p)) ] = H and laws of large numbers, we have
I 1 2,1

(A.2) 0 = N Z 1 =,,1 (H4 1/H3 ,)[HI~dt(i*)} - H2 , ,*)] + ap(1)

By the arguments of Ruppert and Carroll (1980) or Carroll and Ruppert (1982a),

-1/2_N
(A.3) N z,1  (H4 i/H3 ,)[HI{dPs)} - Hl di( )}]

,.. . .

%. %. %* ' % %~A . ' * ~~. 5*.. ~ *..-~~_.-
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-1/2 N
z-1 (H4 ,1/H3,1) H 1(dI(j))di(P) - d (p)) + ap(1)

B 3, N  12 -1/ + O p(1).

Applying this result to (A.2) along with a Taylor series in H2, 1 gives

-1/2 N /20 Z1 C + (B2 .N + B3 .N) N-

Bi,N N121-7 +a~)

which is (3.2). 0

Theorem 3.2 follows by a similar argument; in this case the representation

(A.3) is unnecessary.

Sketch of proof of Theorem 3.3: We consider Theorem 3.2; the proof for Theorem

3.1 is similar. Recall here that (2.4) holds. In the following, all

derivatives are with respect to the meanju and the definitions of Ci and H2, i

are as in (3.4).

Assumption (iv) implies that N1 /2  0 so that a

series in q, 9 and VI. gives

1/ .1 I .

BIN L J'-1 = N '2 t= Ct -N 1  N 1 1 2,i4,/H3,)(Vi - P/)

+ N-1/2 N (H 4  
) - (h 1/H )(I -. ) + o (1).+ p t 1  4,1 /3,1 3,1 /3,1 p

Since Vt. p- a g(pl,z 1 ,9) T1. AN- 1/2g(p*zI,) 1., where i. is the mean

.,.' ''' ,F~v .. . ' ' 
°
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of the errors at xi , we can write the last two terms on the right-hand side of

(A.4) as

AN-1 N T (q + q )Zi . 1  , 2 Ct

for constants (q1 ~). By assumption (v), since . has mean zero, (A.5)

converges in probability to zero if E(l1 c1 ) = 0, which holds under the

assumption of symmetry. Thus, (A.5) converges to zero which from (A.4)

completes the proof. Note that if we drop the assumption of symmetry, from

(A.5) the asymptotic normal distribution of N1(8 - 9) will have mean

p-lim{ A B 1  N _ 1  ( N. 1 C- q

APPENDIX B. CHARACTERIZATION OP RESTRICTED MAXIMUM LIKELIHOOD

Let be a generalized least squares estimator for A. Assume first that

g does not depend on A. Let the prior distribution for the parameters ?r(,G,G)

* be proportional to . The marginal posterior for 9 is hard to compute in

closed form for nonlinear regression. Following Box and Hill (1974) and Beal

and Sheiner (1986), we have the linear approximation
ot

f(x -p f( i ' ) + f A(x

Replacing f(xi,p) by its linear expansion, the marginal posterior for 9 is

proportional to

N 2 -1/2

(B.1) 0) -(N-p)(6) (Det S(e)}I/2 where

a....... .... .. - . . . . .. •
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; (e) - (N-p) ZN.lrI / g ,2

-1 N t 2
S G(9) -N Z1 1 f A(xi PP) fA(xi ,00 / g (ztA.O).

and where Det A - determinant of A. If the variances depend on 8, we extend

the Bayesian arguments by replacing gp(0) byg(z I 0.G).

Let H be the hat matrix H evaluated at P, and let hii = hii(P..e). From

(2.1), pseudo-likelihood solves In (G,a)

(B.2) z [r /(a g (zI  [LOZ ,11 ] I I

Since H is idempotent, the left hand side of (B.2) has approximate expectation

(B.3) z/ 1 1 V 0(zl~,e 11(- h 1i)

To modify pseudo-likelihood to account for loss of degrees of freedom, equate

the left hand side of (B.2) to (B.3). From matrix computations as in Nel

(1980), this can be shown to be equivalent to restricted maximum likelihood.

4%%%
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Asymptotic relative efficiency with respect to weighted squared residuals

for contaminated normal distributions with distribution function F(x) , (1

a)#(x) + a*(x/3).

contamination weighted absolute logarithms of
fraction a residuals absolute residuals

0.000 0.876 0.405

0.001 0.948 0.440

0.002 1.016 0.480

0.010 1.439 0.720

0.050 2.035 1.220

Asymptotic relative efficiency of using sample standard deviations to using

absolute residuals under normality for H (x) (weighted methods).

2
z 1 OLT

2 0.500 0.500 0.500

3 0.667 1.000 0.696

4 0.750 1.320 0.801

9 0.889 1.932 0.986

10 0.900 1.984 1.001

do 1.000 2.467 1.142
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Asymptotic relative efficiency of using sample standard deviations to

weighted squared residuals under normal errors for H (x).

2 0.500 0.203

3 0.667 0.405

4 0.750 0.535

5 0.800 0.620

6 0.833 0.680

7 0.857 0.723

8 0.875 0.757
S.

- 9 0.889 0.783

10 0.900 0.804
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